Implementation of a virtual reality design review application using vision-based gesture recognition technology

Author: Andreas Aalsaunet

Download PDF.

Choosing annotation visibility in the virtual design review application.

Classification societies date back to the second half of the 18th century, where marine insurers developed a system for independent technical assessment of the ships presented to them for insurance cover. Today, a major part of a classification society’s responsibilities is to review the designs of enormous maritime vessels. This usually involves working with big and complex 3D models and 3D tools, but without support to do many of the tasks required in a design review. As a consequence, the workflow is often just partially digital, and many important tasks, such as annotating or commentating on aspects of the models, are done on paper. DNV GL, the world’s largest maritime classification society, is interested in digitalizing this process more, and make it more interactive and efficient by utilizing an application that allows for virtual design review meetings in the 3D models. In these virtual design review meetings, the designer and reviewer could remotely interact, survey the model together, and annotate it instead of model-printouts. As the sense of scale is important in a 3D model review, virtual reality technology is deemed promising as it gives a unique sense of scale and a depth, which is hard to match by regular 2D screens. DNV GL is also interested in alternate interaction methods, as mouse and keyboard can have some limitation when working in 3D environments. Gesture Recognition Technology has been of special interest as this can potentially offer unique approaches to working with 3D models. This thesis implements such a design review application using state-ofthe- art virtual reality- and vision-based gesture recognition technologies, coupled with the Unity game engine, a popular cross-platform game development platform and software framework. After discussing these technologies’ theoretical foundations, the thesis reviews the requirements and design of the design review application, in addition to documenting its implementation and evaluating its performance by conducting user tests. In the implemented design review application the user is able to navigate 3D models, annotate them and perform various other actions, all performed by gestures.